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Passive particle transport in three-vortex flow
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We study transport of tracer particles in a two-dimensional incompressible inviscid flow produced by three
point vortices of equal strength. Time dependence of the flow caused by vortex motion gives rise to chaotic
tracer trajectories, which fill parts of the flow plane referred to as mixing regions. For general vortex positions,
a large connected mixing regidighaotic senis formed around vortices. It comprises a number of coherent
fluid patches(islandg, which do not mix with the rest of the chaotic sea, inside them particle motion is
predominantly regular; three near-circular islands surrounding vortices are distinguished by their robust nature.
Tracers in the chaotic sea rotate around the center of vorticity in an irregular way. Their trajectories are
intermittent, long flights of almost regular motion are caused by trappings in the boundary regions of regular
islands. The statistics of tracer rotation exhibits anomalous features, such as faster than linear growth of tracer
ensemble variance and asymmetric probability distribution with long power tails. Exponent of the variance
growth power law is different for different time ranges. Central part of the tracer distribution and its low
(noninteger moments evolve in a self-similar way, characterized by an exponent, which is different from that
of the variance, and contrary to the latter is constant in time. Algebraic tails of the tracer distribution, control-
ling the behavior of the variance, are responsible for this effect. Long correlations in tracer motion lead to
non-Poissonian distribution of Poin¢aecurrences in the mixing region. Analysis of long recurrences proves,
that they are caused by tracer trappings inside boundary layers of islands of regular motion, which always exist
inside the mixing region. Statistics of Poincamecurrences and trapping times exhibit power-law decay,
indicating absence of a characteristic relaxation time. Values of the decay exponent for recurrences and for
escape from the analyzed traps are very close to each other; long correlations are not dominated by a single
trap, but are a cumulative effect of all of them, relative importance of a trap is determined by its size, and by
its rotation frequency with respect to the background.

PACS numbse(s): 47.32.Cc, 05.45.Ac, 05.60.Cd

I. INTRODUCTION Velocity field, generated by vortices is a regular, quasiperi-
odic (periodic in corotating framefunction of time, yet for a
Problem of advection in Lagrangian representation is aeneric vortex initial positions some tracer trajectories are
problem of finding the pathlines of fluid elements in a pre-chaotic[10,11]. It is a typical example of chaotic advection,
scribed velocity field. It is directly related to the processes ofwhich, in a narrow sense, is defined as an appearance of
transport of passive particles and passive scalar fields, arichgrangian chaos in a regular, fully deterministic velocity
has numerous applications in geophysical fluid dynamicsfield [12]. Chaotic advection deserved a lot of attention for
chemical physics, flow visualizations, etc. In many of thosetwo main reasons: its direct application to transport phenom-
the flow can be considered as two-dimensional and incomena in unsteady laminar flows, and as a starting point for the
pressible. In this case, advection is described by a nonautatudy of large scale transport in two-dimensional turbulence.
nomous Hamiltonian system, and can be distinguished by thBoint-vortex systems come as a first approximation to the
nature of the velocity field of the flow being turbulent, lami- flows dominated by coherent vortical structures, they capture
nar chaotic, regular, or steady. While the last case is rathesome principal features of such flojs3—16. Considerable
trivial and leads to particle trajectories coinciding with simplification of the flow dynamics allows a detailed analy-
streamlines of the flow, in the first three cases typical particlesis of tracer motion in point vortex systems in many cases.
path is chaotic, and we have to abandon the idea of tracing/hen the flow is periodi¢in some reference framea Poin-
individual particle paths and either resort to probabilistic de-caremap of tracer trajectories can be used to find regions of
scription of advection or seek to find principal dynamical chaotic tracer dynamics; such is a situation in oscillating
structures governing the character of tracer spreadir@l.  vortex-pair problem[4], three-vortex flow in unbounded
In this paper, we study transport properties of advection irplane [11,17,9, leapfrogging motion of two vortex pairs
a flow due to three point vortices moving under their mutual[18], vortex flows is bounded and periodic domajit§—22.
interaction. It can be considered as a continuation of oulhis technique is inapplicable for aperiodic flows; in Ref.
previous publicatiori9] on dynamics of tracers in this flow. [23] particle tracking, tracer cloud spreading, and finite-time
Lyapunov exponent analysis were used to study the advec-
tion in the field of four chaotically moving point vortices of
*Present address: Lefschetz Center for Dynamical Systems, Dividentical strength, in Ref24] similar methods were used for
sion of Applied Mathematics, Brown University, Providence, advection in an open chaotic flow due to four vortices with
RI 02912. zero total circulation.
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In this paper, we study asymptotic properties of passivaelence of advection patter(phase space structyren the
particle transport in a flow due to three identical point vorti- flow parameter, and review some of the analytical results of
ces. The degree of tracer chaotization depends on relatividef. [9].
positions of vortices with respect to each oth@}. We look Results of a numerical study of tracer transport properties
at the most interesting, strongly chaotic case, when vorte}) the mixing region are presented in Sec. lll. Tracer statis-
motion creates a large connected mixing region in the flowtics considerably differs from Gaussian, their azimuthal dis-
We have found, that tracer statistics in such flow is anomatribution P(6,t) has long tails and is asymmetric. Evolution
lous, i.e., non-Gaussian. This result can be related to gener8f distribution moments does not follow a single-scaling law,
properties of transport in Hamiltonian systefs]. Generic ~nd cannot be described by a unique transport exponent. Re-
Hamiltonian chaos is not ergodic, the phase space contaif€Ntly [45], a notion of strong anomalous diffusion was pro-
an infinite set of islands filled with regular trajectories, form- posed for a situation of this kind, when the transport expo-

ing a fractal structure, which strongly affects the motion m:’lents are different for small gnd Iargel m_on|1ent_s. Ir|1 our Cl"."se’
the parts of chaotic sea, adjacent to it. These parts, callegd.. noninteger moments, obey a relatively simple scaling
' ' ' lationshipM ,(t) ~Ct°* with exponentés=0.626, reflect-

smgular zones,'act as part!cle quasnrgps, .and pfoduce I.Onﬂig a self-similar spreading of the central part of tracer dis-
lasting, algebraically decaying correlations in particle motionyipution. Higher moments do not obey this scaling, for ex-
[26,27]. The memory effects due to correlations sometlmesamme, variance ¢=2), is characterized by exponept

can be taken into account by the modification of the diffu-(instead of 2), which has different values for different time
sion coefficient in the Fokker-Plank-Kolmogorov equation ranges, oscillating betweem,~1.8 andu,~1.3.

[28,29. However, the influence of correlations if often more |5 Sec. |v, the long-time correlations in tracer motion,
profound, leading to nondiffusive kinetics, characterized byleading to the anomalous tracer properties are studied. We
nonlinear growth of particle displacement variance in somestart from distribution of Poincareecurrences to some ob-
directionx servation domain inside the mixing region. Short-time recur-
rences decay exponentially, but do not have a single-
a2(t) = ((x—(x))2)~t*, (1.2 characteristic time, due to the existence of a large scale
structures in the chaotic sea. Long recurrences have a power-
law decay, with the exponent=2.6. Analysis of long Poin-
@r’ecycles shows, that they originate from tracer trappings
inside singular zones along the borders between regular and
chaotic regions. We identify a few principal traps, and build
the histograms of residence time distributions for them. Al-

merical studies of Hamiltonian flows and m4gs,27,37,3  though the sticky zones have very different geometry, their
also provided evidence of non-Gaussian transport, whick€Sidence time power-law tails have approximately the same
was named “strange kinetics[25]. Apart from the nonlin-  value of decay exponenj~2.5. The exponents in Poincare
ear growth of the variancél.1), strange kinetics comprises recurrence qnd reS|den_C(_a tlm.e distributions practically coin-
such effects as non-Poissonian distribution of Poincecar-  €1d€, Which is not surprising: it reflects the fact that the ma-
rences, power-law decay of exit time distributions, etc. AIOTity Of long recurrences are due to “one-trapping” cycles.
search for a theoretical description of anomalous transpoft SOmewhat faster decay of recurrences can be attributed to

brought up a number of new notions into the field, such adhe admixture of multiple-trapping events, when a tracer,
Lévy flights [39], continuous time random walkgi0], re- during its travel between two successive returns to the obser-

newal formalism [41,42, fractional kinetics [43,27,44. vation domain, gets stuck inside singular zones more than
However, despite a considerable progress in our understan8Ce- , .
ing of strange kinetics, some principal questions remain un- SiNce the decay exponents of the major traps are so simi-
answered. Returning to the hydrodynamic language, we ma:}?r: relgt|ve |mp0_rtance of the traps in producing long corre-
say, that at the present moment there is no complete transpdffions is determined by the area of singular zones. We have
theory of advection, which would be able, for a given veloc-found, that in our system, contributions from sevgral princi-
ity field, predict the statistics of tracer dispersion; in otherP@ traps are comparable, and have to be taken into account
words, given the stream function of the flol(x,y,t) find when the effec_:ts of correlations on transport are studled_. As
the probability distribution functiofPDP for the tracer po- e have mentioned before, these traps are of different origin,
sition P(x,y,t) for large times. For that reason, numerical € they are not just a family of symmetric islands; a major

analysis of the advection statistics remains an important todfonseduence is that they have different rotation frequencies,
in our studies. in other words, they produce flights with different velocities.

In Sec. I, we review the dynamics of the advection in the I'Nis further complicates statistical description of tracer ad-
three point vortex system. Motion of three point vortices is?ection: not only a simple Gaussian process, but also a con-
governed by an integrable Hamiltonian system, and is quasgtant velocity Levy-walk modgl40], or any other stochastic
periodic for almost all values of system parameténitial ~model assuming constant flight speed, cannot be applied
conditions. It can be thought of as a superposition of a uni-here, without modifications accounting for different flight

form rotation and periodic relative motion. In a referenceSPE€ds.
frame, corotating with vortices, their motion, and the veloc-
ity flow field produced by them, are periodic. Advection
equations in the corotating frame have a structure of a peri- Trajectory of a passive tracer in an incompressible two-
odically forced Hamiltonian system. We analyze the dependimensional flow is given by a solution of advection equa-

with non-Gaussian value of the transport expongnrt 1.
Such cases are referred to as anomalous diffusion, or, mo
generally, anomalous transport.

Anomalous transport occurs in many physical settings
both in Hamiltonian and dissipative systefr80—35. Nu-

Il. ADVECTION DYNAMICS IN THREE-VORTEX FLOW
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tion, which have a Hamiltonian form This system is autonomous, ahtis an integral of motion.
Translational and rotational invariance yield three more first
v (xyt)y o dT(xyY) integrals: two components of vortex “momentum”
= Y= @)
y ax
wherex,y are coordinates of the tracer, dot denotes time dif- Q+iP= Z kz, 2.9

ferentiation, and the flow velocity field is specified by stream
functionW(x,y,t), so thatv=(d,¥,—d,¥). Equation(2.1)

: ) . and “angular momentum”
can be put in a compact form by introducing complex coor-

dinatez=x+iy 3
2__ 2
| o L _;l k|z;|2. (2.10
Z*=[z*,V]=2i 3 (2.2
Out of this four, three integrals in involution can be formed:
with fundamental Poisson bracket given [myz* ]= —2i. H, L? and Q*+P?, which indicates that syster(2.6) is
Stream function of a system of three point vortices is aintegrable. For any vortex configuration, we can introduce a
sum of contributions of individual vorticgg6] “center of vorticity” reference frame by choosing the coor-
dinate system origin at the poiQ+iP, so that in this co-
3 ordinates vortex “momentum” is zero, i.eQ=P=0. Fur-
W(z,z")=-— mzl kmInlz—zy(1)[?, (23 ther, we can rescale coordinates and time

2
where z,(t)=x.,(t) +iy,(t) and k,, are coordinates and 2=z, =KL (217

strengths of corresponding vortices. The above formula ass . . o
. elow, we will always use “center-of-vorticity” reference
sumes that the flow occupies the whole pldne walls or

. . e frame and dimensionless coordinai@sl1l), thus fixing Q
other obstacles of the kindnd has zero velocity at infinity. — S AT
Advection equation takes form =P=0,L=1, k=1. Value of the Hamiltoniam is the only

parameter that is left that distinguishes different types of mo-

1 3 . tion. It can be related to the product of side lengths of the
7% = = L vortex triangleA
=2 Wl=5 o 2 = 20 (2.9 9
. . _ e ?M=A=(2,-2,/|2,— 23|25~ 24 (2.12
As soon as vortex trajectorieg,(t) are known, the flow is
completely specified. Parameter range is froid=0, A =1, when vortices stay in
Vortices are advected by mutual interaction. Equationthe vertices of uniformly rotating equilateral triangle, up to
governing their motion is similar to Eq2.4) the limiting valuesH ==, A =0, when two of the three vor-
tices tend to coalesce. Their is an elegant Wil to reduce
'z*=i i (mj=1,2,3 Eqg. (2.6) to an equation for “area variableT(t), propor-
m i !J 149 ) (25) . .
2l {Fm Zm— Z tional to the square of the triangle arda
where singular self-advection term wifl=m should be ex- [(t)=(16/3A2. (2.13

cluded from the sum. The above system has a number of

interesting solutionf47-51], among them finite-time vortex Dynamics ofl(t) is given by
collapse[52] [53], scattering of a vortex pair on a point
vortex[54], etc.

We restrict our attention to the vortices of equal strength
k=k.,,, m=1,2,3, and discuss relevant features of the solu-
tion of Eq. (2.5 for this case, in order to provide an insight =—P(I;A), (2.19
at the character of the motion. It was known since Kirchoff,
that dynamics of point vortices can be written in the form ofwherer=3/(2wA?)t. It can be thought of as a motion of a

Hamilton equations. In case of identical vortices, Eg5)  Particle of mass 2 with zero total energy in the potential
can be written as P(l;A). This motion can be of three different types: for

less, equal or larger thah,=1#2. Shape of the potential
=[z} ,H], (2.6)  well for these three cases is shown in Fig. 1. When
<A, I(t) reaches zero periodically, i.e., vortices periodi-
with Hamiltonian function cally pass through an aligned configuration; fo= A, mo-
tion is aperiodic, aligned configuration turns into an unstable
__ L E In|z,,— ;|2 2.7) equilibrium; and forA > A . I (t) oscillates between two posi-
m ' tive roots ofP(I; A)—vortices never get aligned. Solution of
Eq. (2.14 can be written in terms of Jacobi elliptic functions
and fundamental Poisson bracket [11] [9], it is periodic forA # A, with periodT(A) diverg-
ing logarithmically asA —A.. Vortex trajectories can be
[2m.2]=0, [Zn.Z]]1=—2i6y;. (2.8 reconstructed froni(t), they are given by

dl\?
d—T) =—I[13+61%2+3(3—8A?) | +8A%(2A%—1)]
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whereZ=ze 't s tracer coordinate in the corotating frame,
and the stream functiofperiodic in time with periodrl) ac-

quires an additional term, corresponding to rotational “en-

QA __,
522"
(2.20

System(2.19 belongs to the class of Hamiltonian sys-
tems with & degrees of freedom, its solutions can be regular
or chaotic, depending on the initial position of the tracer, and
the character of vortex motion, i.e., form of functicpg(t)
specified byA. Appearance of chaotic tracer trajectories in
this system was first demonstrated in Rdfkl] and [10].
Structure of the advection pattern, i.e., dependence of the
solution type on the initial position, was analyzed numeri-
cally in Ref.[17] and numerically and analytically in Ref.

0 0.2 0.4 [9]

I Below we present examples of advection patterns for four
values of the paramete, illustrating the variety of phase
space structures in three-vortex flow. Periodicity of the flow

- k o
V(2725 t)=—— In[z—%;(t)|?+
@2 0)== 7 2 IZz=7%(1)

FIG. 1. Effective potentiaP(l;A) for the dynamics of the area
variable I (7), shown for three values oh: A;=0.6<A;; Ay

A= A A= 085 A in the corotating frame allows to construct Poincarap of
cr S ¢ tracer trajectories. We integrate E@.4) numerically and
2,.(1)= 6 V2L g 42002 1 | V2(1) U2 27i(m- 13- (012 record tracer positioriin the corotating framewith time

interval equal to the period of the flol see Fig. 2. It turns
F[1+1Y2(t) |V 4mi(M=DBei2(V/2)  (m=123) out, that degree of chaotization of tracer motion varies con-
siderably with the change of the geometry of the background
(219 yortex motion. WhenA =1, vortices do not move in the
corotating frame and E¢2.19 becomes an autonomous sys-
tem, so advection is integrable—tracers move along the level
(1+31)—4A2 curves of EQ.(2.20 (streamlines Among those, there are
CoS3p;=———— (2.16 two sets of separatrices, connecting saddle points of
W(%,%*), where tracer trajectory is aperiodic. They are the
seeds of chaos—even for the slightly distorted equilateral

where “configuration angle’¢4(t) is defined by

(1_|)3/2

and “rotation angle” ¢,(t) can be written as a quadrature of : . . 4 .
some function of (t) [9]. Note that relative motion of vor- configuration withA=1=e¢, e<1, when vortices start to

tices, described by the term in square brackets in(Ed.5 osdcnla\t/g arﬁund the eqwllbrlulm pozn;on with ar;:_phtudg of
is periodic [47,11 (with period T,,=2T for A<A, and order e, the separatrices split and form two thin mixing

T,.=3T for A>A_), and during each period the whole con- layers, Fig. 2a). These layers merge together for fairly small

; i _ lue of distortione~10"®, mixing region grows very fast
figuration is rotated by a constant angB(A)= ¢,(T,e) va S
— ¢,(0), which means we can consider vortex motion as aaSA decreases, see Figl, A=0.94. The strongest chao-

superposition of periodic motion and rotation with constant'Zation Qccurgwhem Is close toA., Fig. Ac). After A
angular velocity[17,9] passes its critical valué\., the type of vortex motion

changes. This is reflected in the change of the symmetry of
QA)=O(A)/T,y. (2.17)  vortex trajectories: in “triangular” regimeA> A, all three
vortex trajectories can be obtained from each other
In general,Q2(A) is incommensurate with2 and vortex A ]
trajectoriesz,(t) are quasiperiodic. Zn(t+Te/3)=Z;(1)€*™", m=1,2,3; j—1=m mod 3.
In addition to the laboratory “center of vorticity” refer- (2.2
ence frame, defined above, it is convenient to cpn3|der AN the “two plus one” caseA<A,, the vortex that was
other reference frame, corotating with vortices with angular.

. X 2 . initially further from the other two becomes special—it
velocity (0 (A). Vortex trajectories in the corotating frame keeps oscillating in its own corner, while the other two

7 (D=2, ()e 1 ¥Mt m=123 (2.18 change places with each other. There is still a symmetry

m m ’ 14 .
are periodic with period . The advection E¢(2.4) in the (14 Tre2)=Z3(1); Zo(t+ Treil2) =Zo(1);
corotating frame takes form

Zy(t+ T /2) =Z4(1), (2.22
3
P =[7* V)= L 2 1 FiIQ(A)ZF but it is only betweefZ, andZ; (two vortices in the bottom
’ 27 f=1Z—Zy(t) ’ in Fig. 2. These symmetries explain the relation between the

(2.19 period of vortex trajectorie$,.; and the period of the stream
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(b) x e x

FIG. 2. Advection patterns for different vortex geometrigg:Weak chaosA =1—2.4x107; (b) A=0.94; two types of islands in the
chaotic sea: three smooth vortex cores and elliptic islands with rugged boundarias= 0.707109; strong chaos, elliptic islands vanish
from sight(very small islands still can be deteciefortex cores are robustd) A =0.464; asA gets smaller, the advection pattern starts
to resemble that of a two-vortex system.

function T. As A gets smaller, the asymmetry between thesmooth, robust, near-circular patches surrounding vortices
isolated vortex and vortices forming a pair becomes morend moving together with them, forming coherent structures
pronounced—the coherent core around the former growsnown asvortex cores and elliptic islands, surrounding
while the cores of the pair gets smaller, Figd2 Mixing stable periodic orbits, number of which, as well as their size
region shrinks, and as\—0 the advection pattern ap- and Shape, delpends ina very sensitive manner on the small-
proaches more and more to the regular advection in the fiel@St variations in the background flow. In RE8] the robust
of two point vortices with strengthis and . nature of the vortex cores was explained and expressions for

Except for the near-integrable casks-1 andA <1, the th_el_r radlus_gC and for rad|u§ of the external boundary of the
advection pattern has three main types of compondits: mixing region R”?ax as function of the .background flow ge-
“far region,” where tracer motion is regular, roughly occu- ometry were den\_/ed. For small de_v|at!oﬁA_\EA—Ac from
pying the outside of the circle of radit,,~1.6: (ii) mix- critical configuration, the core radius is given by
ing region inside this circle where fluid is efficiently stirred V3 12

. o Lo mv3

by vortex motion;(ii) islands of regular motion inside the L= , (2.23
mixing region, which are of two different types: three 18(Inin| 6A|~*+1n4C,)
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- 0 1 folded. However, to extract a long-term statistics of the
tracer motion from the manifold geometry can be a prohibi-
tively difficult task. The reason for that is the crucial influ-
ence of the fine structures in the chaotic sea, such as hierar-
chies of island chains, that, although very small, cannot be
neglected because they introduce long-time correlations, and
cause intermittent behavior of the tracer trajectories.

Alternative approach is to model the motion in the chaotic
sea as a random process. A central problem here is how to
0 specify, for a given velocity field, the type and parameters of
this random process. A major difficulty is the sensitivity of
the long-term tracer statistics on the small variations in the
control parameters of the flow, arising from the sensitivity of
the fine topological structures in the chaotic sea. Despite a
considerable progress in the understanding of the origin of
the long-time correlations, created by the stickiness of the
trajectories to the singular zones surrounding regular islands,
and of their influence on the statistics, one still have to rely
on numerical simulations in order to construct a realistic ap-
proximation for the transport in the mixing region.

To study statistics of the tracer motion, we have numeri-

FIG. 3. Tracer mixing. Originally concentrated in a rectangle atcally integrated equations for the tracer trajectotizg), for
(0.5, 0, after only two periods of vortex motion tracers are spreada typical case of strongly mixing background vortex flow
around the chaotic sea. Manifold structures still can be seen. with A=0.717. Advection pattern for this value of the flow

parameter exhibits different types of interesting phase space

where constan€,= 74.3 for nonisolated vortex positidall  structures: vortex cores with sticky bands on their borders,
three vortices forA>A. and vortices in the pair fo\  elliptic islands with different kinds of boundary chains, and
<A.), andC,=1.20 for isolated vortex in case<A.. The  sticky outer rim of the chaotic region. We use a fifth-order

X

outside radius of the mixing region is symplectic Gauss-Legendre schefis] with a time step
" At=0.04, such thatv,,At=0.03, wWherev yq,~(27¢) 2

8BIn| SA| ~0.78 is the fastest frequency of the problem, determined by
max:(?) ' (2.24 the closest approach of the tracer to the vortgx0.18.

Symplectic schemes are a natural choice for numerical inte-

gration of Hamiltonian systems, in particular, for the case of
four-point vortex system they work better than standard

Runge-Kutta schemg$6], although recently in Ref23] it

as demonstrated, that higher order adaptive Runge-Kutta

chemes can yield similar performance.

where constanB=0.41 for both caseA>A. andA<A..
The tracer motion in regular regions is quasiperiodic, an
can be studied in as much detail as necessary by direct d
namical analysis. For example, tracer trajectories in the fal
region, or inside the cores can be found using perturbatioﬁ L ) ) ; -
theory up to the desirable degree of approximaf@h This quncaresectlons of tracer trajectories, shown in _F|g. 4
procedure may get technically complicated, especially f0|f0r_d|fferent phasest( O'T/4'T/2'3T/4) of vortex configu-
the motion inside elliptic islands of higher generations, putation, lllustrate the dy”a”_“cs of the aQVect|on pattern, a!"d
the big picture is essentially the same—the island as a Whol@”oW to express the rotation frequencies O.f the regular is-
moves quasiperiodically inside the chaotic sea, with all thd2dS: through the frequency of corotating framey
tracers inside trapped forever. We should mention, thaf‘/(27)=0.0879 and the frequency of vortex relative mo-
strictly speaking, some of the inside tracers move chaotition ¥rei=1/Tre=0.0511. _ .
cally, since the KolI'mogorov-Arnol'd-MosefKAM) tori of Let us concentrate our attention on the apgulgr ad-VGCt.IOI’]
of tracers, since their motion in the radial direction is

regular motion are interlayered with thin stochastic lay@rs g .
place of destroyed resonange¥his generic property has Pounded by the outer border of the mixing regi@24. To

certain principal consequences, in particular it negates a pog_escrlbhe Ithe angular motion of a tracer, let us consider its
sibility of determining the motion inside the regular regions @2imuthal coordinate

exactly but it is not relevant on bigger scales.
6(t)=Argz (3.9

I1l. STATISTICS OF ANGULAR ADVECTION . . . . .
as a continuous function of time, in other wordsgt) is not
In the mixing region one cannot follow individual tracer confined to the intervald;27), but keeps track of the number
trajectories for longer than a few periods of vortex motion,of whole rotations performed by a tracer since the beginning
they diverge exponentially and spread over the whole chaotiof its motion. We start with an ensemble of 6144 tracers and
sea, Fig. 3. The key features of the dynamics of this processumerically integrate their trajectories fgy,,=512000 time
can be understood in terms of the evolution of the hyperbolianits [see Eq.(2.11) for definition of the time scalewhich
points and their invariant manifolds, which govern the geom-corresponds tdN,,,,,~26160 periods of vortex relative mo-
etry of mixing, i.e., the way fluid elements are stretched andion. All initial conditions were taken inside the mixing re-
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-1 -1

FIG. 4. Advection pattern for different phases of vortex configurati@h.Configuration with maximum of the vortex triangle area
corresponds té=0; (b) quarter of the area oscillation period= T/4; (c) half-period:t=T/2; (d) t=3T/4.

gion. Mean advection anglgd(t)) and the angular variance versus time, indicating the anomalous character of the angu-
a?(t)=([ 6(t)—(6(1))]?) are defined as averages over thelar diffusion. Moreover, different time ranges have different
ensemble. Typical evolution of tracer azimuth is illustratedtransport exponents

by Fig. 5, whered(t) —(6(t)) is plotted for eight trajectories.

Intermittent character of tracer motion is clearly seen, appar- t<10* o?(t)~t*1  u,~1.79
ently random pieces of trajectory are interrupted by regular
flights, some of which are quite long. 100<t<10 o2(t)~t'2 p,~1.32

The mean grows linearly with timéexcept for the very
beginning of the motionand we can define an average rota- F o2 u
tion frequency for the chaotic sea t>1 o ()~ ug~1.78 33

as can be seen from Fig(a. This behavior of the variance
can be explained by the so-called log-periodic oscillations
[57], which infer existence of a discrete renormalization
its value isv~0.0742. The growth of the variance is not property of trajectories, when they stick to a hierarchical
linear. Figure 6a) shows the log-log plot of the variance chains of islands.

T=(0(1))(2mt), (3.2
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~1.25. However, Eq(3.8) holds only if f(¢) decays fast
enough at infinity. Iff (¢) has a power tailf (§)~ &~ 7, only

the moments witm<<z—1 will follow Eq. (3.8), whereas
higher moments are determined by the cutoff of the distribu-
tion at large#. Tails of the tracer PDF, plotted in Fig(®

for four different times indicate a decay according to a power
law

2000

1500

1000

P(6;t)~(6—(0))"" (3.9

6; — (6)

with »=2.72. For such slow decay, all moments starting
from the variance if=2) are defined by the far end of the

distribution, i.e., by a specific mechanism of the cutoff at
large 6.

Self similarity (3.7) and(3.8) can be traced in the behav-
ior of the noninteger momentd ,(t) = f 6*P(6,t)d# for «
<n—1, which are defined by the central part of the distri-
bution (Fig. 7). We have a situation, when a unique exponent

100000 200000 300000 400000 500000 is not enough to completely characterize anomalous behavior
t of tracer transport. This case was nanstcbng anomalous
diffusionin Ref.[45], in contrast to the case of weak anoma-

FIG. 5. Time series of the azimuthal coordinate{6) for eight  lous diffusion, when the evolution of all moments is de-
typical tracer trajectories. scribed by a single exponent according to Eq(3.8).

The origin of the power tails oP(6,t) as well as of the

To detect a source of this behavior, we look at the formother anomalous properties of the tracer statistics, lies in the
and the evolution of the angular probability density functionintermittent character of the tracer motion in the mixing re-
of the tracersP(#6;t), which is constructed by building a gion, caused by tracer trappings in the singular zones, sur-
histogram of a numerically obtained set of values9(f) of  rounding KAM islands. A piece of a chaotic tracer trajectory,

500

M,Q.M\ PN
&7 ""W‘W"N N\\,

AW

-500

the tracer ensemble for a given time. during which the tracer is caught in the hierarchical structure
For many stochastic processes, PDF at large timeat the island border is almost regular—the tracer is carried
evolves in a self-similar way along with the island in a ballistic flight, characterized by
almost constant angular velocigveraged over times of or-
PXi)=g(Df(§) E=g([X—(X)]. (3.4 derT). Appearance of flights and their dominant role in par-

ticle statistics is typical for the chaotic floW58,36|.
The structure of the singular zones on the island borders is
P(X;t)=(mt) Pexpe?2 ¢=t"YIX—(X)] (3.5  usually very sensitive to the variations of the parameters of
the flow. In some situations, particle quasi-traps can vanish
and a PDF of a Levy-type procesandom walker with in-  altogether from the chaotic sea, resulting in the ‘“restora-

For example, PDF of a Gaussian random variableas

finite mean-square step length tion” of the normal diffusive behaviof58]. We have looked
s s for such situation for a three-vortex flow, trying to find a
PIXi)=t""°f(§) &=t~ "X (36 value of the parametek for which tracer statistics becomes

. : . Gaussian at large times. The results of this search were nega-
To check if the obtained PDF of tracer rotation angles
evolves in such self-similar way, we have looked at the tlmelve but insightful. Taking a value oA, for which the ad
vection pattern is seemingly devoid of sticky structureig).

dependence of the probability density at the center of distri:
bution, Ppo(t)=P((6)1). It tums out, thatP,.(t) quite ac- 2(c)], we have propagated an ensemble of particles in this

m P q flow, looking at the behavior of the varianeg(t). If the
curately follows a power lawp ,,,,(t)~t™° with an exponent

N . number of the particles in the ensemble is not too large, the
6~0.626, which suggests that PDF may have a form resulting angular diffusion appears normaf(t)~t. How-

P(O,)=t (&), &=[6(t)—(6(t))]t~%. (3.7  ever, after the ensemble size is increased, some of the tracers
fall into small quasitraps hidden in the chaotic sea and long
Indeed, plots of tracer PDF as function éffor different  flights appear, destroying Gaussian statistics.
times coincide, see Fig.(I§) indicating that self similarity

(3.7) does hold. IV. POINCARE RECURRENCES AND FLIGHTS
There is a seeming discrepancy between this result and o , ) .
the behavior of the variand8.3). According to Eq(3.7), the Poincaremap of the tracer trajectories used in Sec. Il to

visualize advection patterns, can be employed to study cor-
relations in the tracer motion. When a tracer is moving in a
5 s flight, its trajectory is localized around a particular trap in the
Mn(t):f 0"P(6,H)do=t nf £"(§dé~Ct™ (3.8 phase space, so that during the time of the flight it does not
visit the well-mixed component of the stochastic sea. If we
and the variance have to grow ag(t)~t2°, so that the take a domaim in the well-mixed region, and examine Poin-
value of the transport exponent should be constanst28  carerecurrences t®, a flight will indicate itself by produc-

time dependence of th&&th moment is given by
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FIG. 6. (a) Anomalous growth of tracer ensemble varianeé(t) ~t*. Transport exponent is different for different time ranges, see
Eq. (3.3). (b) Scaled probability density of tracer angular displaceni@ as a function of the similarity variablé=t=°(0—(#6)), 6
=0.625.(c) Tails (not scaled of the same distribution in log-log scale show a slow, power-law decay with expaeats.

ing a long-recurrent event. Analysis of such events can rethought of as a sum of contributions from long-correlated

veal what flight types are present in a system, and determiniéights P;,(7;B) and from recurrences due to random motion

characteristics for each type of flights, e.g., flight velocityin the well-mixed regiorP,(7;B):

(angular frequency in our geomelrydomains of localiza-

tion, flight length PDF, etc. Pmix(7:B), if 7<7,
In this section, we will analyze tracer flights in a three- P(r,B)= P. (7B T

vortex flow with A=0.717, following the above recipe. To a(mB), it r>7,

start, we need to chose a b8xin the well-mixed region of

the flow. We cannot take it very large, because we want alfVN€réc is a crossover time. We expect that the distribution
quasitraps to be outside &, in order to be able to detect of random recurrences resembles a Poissonian distribution,

them. On the other hand, we cannot take it very small eitheffyPical for the dynamical chaos with perfect mixirigee
since in that case flights will be shadowed by a backgrouncﬁ?efs-[zﬂ and[59] and references thergin

of random, no-flight recurrences. ,
Indeed, the PDF of the recurrence tirR¢r;B) can be Proix(7;B)=[1K7")]e~ """, (4.2)

(4.2)
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FIG. 7. Growth of noninteger momeM ,s~t%2 is consistent  x e (0,0.4),y e (0,0.4).

with the self-similarity(3.7) of the central part of tracer distribution.

the moment when vortices form an isosceles triangle with all
In this situation recurrences longer thari) are practically —acute anglegthe vortex triangle area reaches its maximum
solely due to flights, whereas those of ordet) and shorter see Fig. 4a).
are predominantly of random origin. Maximum observable As an observation domaifB, we took a squareB:
flight length is restricted by the total integration timg,, so  xe(0,0.4),y e (0,0.4) in the well-mixed part of the stochas-
the flight tail of the recurrences distribution is limited to the tic sea. To collect recurrence statistics the same ensemble of
middle part of the interval{(r'),tna0. IN our system, traps N=6144 tracer trajectories integrated ti}l.,=512000 time
occupy a relatively small portion of the chaotic sea, andunits (2.11) as in Sec. lll was used. Each tracer trajectory

flight events are rare, in a sense that mean recurrence tilfanerates a corresponding trajectory of the rivip-a se-
for nO-fllght events<7',> is of the same order as the total quence{zn: Z(nTrel)} with n running from zero tonax

mean recurrence time =t/ Tre~26160. We define return times a as a subse-
‘ quence of map timefnT,.} corresponding to return events:
<T>EJ 7P(7B)dr. (4.3 {ti=niTq: Zn € B, Zn-1¢ B}, and recurrence times as in-

tervals between successive returhg=t;—t;_4}.
A histogram of the distribution of Poincamecurrences
Since we assume motion in the chaotic region to be ergodiq;>(7) to the boxB is shown in Fig. 8. The total number of
<T> should be inVersely proportional to the area of the Obserrecurrencesl generated by our tracer ensemble M/@@
vation domainB =3,607,086; the longest recurrence time was,.y
=355,899; which is comparable with total integration time
(1)=(Lo/B) Ty, (4.4) tmax- FOr smallr, P(7) decays exponentially, although the
decay rate changes frofr;)~670 to (75)~2800 whenr
goes from 16 to 10* (see Fig. 8 This indicates a presence
of permeable barrier&antor, separating the mixing region
into several parts of comparable areas. Particles returning to
B without crossing these barriers have shorter characteristic
return time, that the ones crossing it. Mean recurrence time
(4.3 is (1)~850, it is of order ;)—fast recurrences domi-
nate. Its knowledge allows us to find the total area of the
mixing region (excluding islandg using Eq.(4.4) we get
To=({7)/T,) B=6.9 (compare to Fig. # Crossover from
exponential to algebraic decay occursrgt=2x 10*. As an
experimental argument in favor of choosing large observa-
- tion domain, we compare the tails of distributions of Poin-
M(Z0) =2(Treii 20).- (4.9 carerecurrences to the boB and to the smaller boB,:
R xe(0,0.2),ye(0,0.2)[Fig. Aa)]. Both distributions are ob-
The mapM depends on the choice of Poincaeetion plane, tained from the same set of trajectories, so they are supposed
specified by a vortex phase &t 0. We chose to sdt=0 at  to capture the same amount of long-correlated flights. In the

where 'y is admissible volumd60,61. If we take B too
small,{(7) and({7') can get comparable witt,,,, and there
will be no flight tail to analyze, PDF of the PoinCarecur-
rences(4.1) will be dominated by random events for all ob-
servation period <t -

Poincaremap we are using is defined as follows. For a
point z, in the corotating advection plane, let us denote
z(t;zp) a tracer trajectory originating ap, i.e., a solution of
Eq. (2.19 with initial condition z(0;z,) =z,. Then, an im-
age ofz, is given by a position of the tracer after one period
of relative vortex motior
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y~2.66. 4.7

Algebraic decay of the Poincarecurrences was observed in
many Hamiltonian flows and area-preserving mgg3,62.

05 Its connection with anomalous transport was established in
Ref. [63].

0 To find an origin of long recurrences in our system, we
want to know, “where in the phase space the tracer travels
05 during such long excursions?” To get a direct answer to this
question, we have plotted long Poincaseles, color coding
them by their recurrence timéBig. 10. PoincarecycleC; is

a piece of an orbit of the map?l between two successive
returns:C;={z,:n;<n<n;, ¢}. In Fig. 10 only cycles longer
than Np,,=500 map periods >Ny T,e~10") are in-
cluded. One can see, that the distribution of the orbit points
2 in the phase space is highly nonuniform, they are concen-
trated around the regular islands and in the thin layer on the
25 outer boundary of the mixing region, in other words, in the
10000 20000 80000 40000 30000 neighborhood of every KAM surface, bordering the stochas-
@) T tic sea. This is a manifestation of the well-known effect of
the stickiness of the KAM surfacesee for example, Ref.
[59]). The deeper the particle penetrates into the hierarchical
structure on the island border, the longer time it is trapped
there. Color coding in Fig. 10 illustrates this effect: longest
cycles(red) are those, which got closest to the island border.
Trapping of the tracers in the sticlsingular zonesn the
borders of the chaotic region seems to be the only mecha-
nism causing the long-term correlations in our system. Quali-
tatively, the stickiness of KAM surfaces is caused by the
fact, that effective Lyapunov exponents in the vicinity of
islands are vanishingly small. One of the first models at-
tempting to explain the way quasitraps work, introduced a
diffusion coefficient, continuously approaching zero as the
distance from the trajectory to the boundary KAM surface
tends to zerg64]. Recently, a similar mechanism was found
to be responsible for anomalous longtitudal dispersion in
temporally irregular transversely bounded shear f(@2].
But for periodically perturbed Hamiltonian systems, in con-
trast to this “smooth escape” mechanism, numerical experi-
ments show, that particle escapes from the trap in a series of
jumps, as the trajectory suddenly crosses partial barriers
(cantor) stratifying the phase space near regular islands.

FIG. 9. (a) Comparison of the tails of Poincarecurrences to 1 NiS give rise to Markov chain and Markov tree mod@s]
the boxB: x e (0,0.4),y € (0,0.4), with that to the smaller b : [26], which describe the quasidiscrete nature of transport in
xe (0,0.2),ye(0,0.2); bigger box is more effective in separating terms_ o_f fluxes through |n_d|V|duaI cantori, organized in a
flight tails from the background of random recurrendés. Tail of  Self-similar pattern, assuming that between two consecutive
Poincarerecurrences tdB in log-log scale exhibits a power-law Crossings particle moves in a random manner for long
decay, with the exponent~2.66, see Eq94.6) and (4.7). enough time to lose memory. Figure 11 shows the character

of particle escape from a singular zone around one of the
|atter casgbox B,) a crossover to power law starts only at vVortex cores in our system. We have put two tracers close to
¢,~45000, which means, that flights with duration less thathe core boundary, and followed the distance from them to
7.. are shadowed by random recurrences, i.e., lost. the central vortex. Initially it oscillates between two values—
2 . . . . tracers are trapped between two oval cantori, with well-
Our main object of interest is long recurrences, one

o . . efined borders. Then, suddenly, a tracer hits a hole in a
bringing in the anomalous transport properties. The tail o y

S 2 S ! cantorus, and jumps to another “level,” where it gets stuck
the distribution, plotted in Fig.(®) in log-log scale, shows a again, bounded to stay inside by another barrier. Sooner or
power-law decay at large

later it finds a hole in that one, too, and eventually escapes
into the chaotic sea.
P(r)~77 (4.6) Figure 10 shows, that several traps contribute to the alge-
braic flight tail of Poincareecurrences PDF, and that these
with the exponent traps considerably differ in size, shape, and structure. To

logyo P(T)

logy P()

4 4.25 4.5 4.75 5 5.25 55
(o) log,o T
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FIG. 10. (Color) Poincarecycles, color-coded according to their recurrence time, measured in number of periods of relative vortex
motion T,,=19.57. Longest cycles are concentrated in singular sticky zones near KAM islands.

compare their relative effects, let us define the PDF of théig side islands Q5: xe(0.2,0.4),y € (0.9,1.2) (one of the
residence timéor stickiness time—time spent in a particular four small islands close to the outer borge®,: x>+y?
trap Pq (t) for each trapQ; . To determinePq (t), we need  >1.% (outer rim of the chaotic sgaAll distributions are

to specify trap boundariesQ;, however, tails of residence extracted from the same set of trajectories, and normalized
time distribution practically do not depend on the exact po-on a total number of trappings in that particular domain.
sition of 9Q;, as long as all singular zonésside which the Our approach in determining residence time statistics dif-
tracer spends most of the trapping tinbelonging to a given  fers from the conventional one, based on the measurement of
trap are completely inside it. In our system individual trapsexit time distributions P¢(t), by initializing many particles
are well separated from each other by a chaotic sea, andside the trap and finding the probability density of escape
appropriate boundaries can be easily chosen to define trdyy counting particles leaving the trap. Exit time measure-
domains. We have analyzed the following tragd;:x  ments allow to collect a very good statistics and thus reach
€(—0.36,0.36),y € (—1.2,-0.5) (big island in the bottom high accuracy in determinin®4(t) [27,37]. However, exit

of Fig. 10; Q,: xe(0.5,1),y e (—0.2,0.9)(one of the four time distributions are defined for each sticky zone individu-
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same tracer ensemble, so that relative importance of each trap can
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t

. so that on the scale of simulation tim&,{,~5X10°) the
FIG. 11. Two examples of escape from the sticky band aroungelative effect of the traps are determined by the values of the

vortex core. Distance from the central vortex to the traces time 5| strengthsA,; , rather than by the differences 4. As can
is shown. be seen from Fig. 11, there is no single dominating trap—the

, big trap around the bottom islar@,, the trap around the

ally, and cannot be used to compare dn‘ferent traps. RoughlyOur big islands on the sid@,, and the outside rim tra@,
speaking,P(t) tells us how sticky the singular zone is, but haye approximately the same strength, and the smaller trap
does not tell how big it is. When we initialize a particle ;. has strength about five times less than that. The value for

randomly in the chaotic sea, and analyze all the flights ithe poincarerecurrence exponertd.7) agrees reasonably
experiences on the way, we can characterize the size of eagly|| with the stickiness exponer{t.9), as should be ex-
trap by the frequency Wlth which it is visited. Impleme.nta- pected. In summary, we may say that the flight tail of the
tion of these procedure is computationally expensive, since pyincarerecurrences PDF is determined by the cumulative
particle can wander for a long time without visiting any rap, effect of trappings in several singular zones with similar
but the necessary data can be collected from the same €fger-law large-time asymptotic of the residence time dis-
semble we have used for the transport simulations at minimg}ipytion.

increase in the computation cost. _ The effect of a singular zone on transport depends not
Tails of the residence times PDF for the trdps defined  op)y on its residence time PDF, but also on how fast the

above, are shown in Fig. 12. The decayRy (t) at large  tracer is moving when it is trapped. The average rotation
times is algebraic: frequency of tracers in the trap around a KAM island is very
close to the rotation frequency of the island itself, provided
Po () =At™ 7 (4.8 the center of vorticity always stays outside of the island. The
latter depends on the way the island is advected during one
with approximately the same value of the decay exponent foperiod of vortex relative motiof,;. From phase portraits in
all four traps Fig. 4, we can obtain

0185}

Wy

v;~2.5. 4.9 V1= Vot Ve =0.138;  v; 3= Vo~ 1/21,4=0.0626

(4.10
Whether all the exponentg should beexactlythe same, i.e.,
whether the value of the decay exponent in the Hamiltoniaror the island inQ;,Q,,Q3. Comparingy; with the average
systems is universal or not, is a question with a long historyiracer angular advection frequeney-0.0742(3.2), we see,
(see for example, Ref§62] and[66]), and its discussion is thatQ; is producing fast flights, rotating forward withv,
not in the scope of the present paper. We will only note, that= v;—»=0.0638 relative to the chaotic background, while
our exponents, coming from the traps with considerably dif-Q, andQ3 are slow traps, rotating backward with respect to
ferent geometry, are nevertheless close enough to each othére background with frequenc) v, ;= v, 3— v=—0.0116.
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special—it is one of the simplest systems generating La-
grangian chaos. Motion of the vortices, specifying the flow,
is governed by a Hamiltonian system, which turns out to be
integrable due to the sufficient number of independent con-
servation laws. Advection equation, written in a reference
frame corotating with vortices, has a structure of a periodi-
cally forced Hamiltonian system, which allows to carry out
el its detailed analytical and numerical study, using well-
developed methods forjldegrees of freedom Hamiltonian
systems.

The phase spadadvection plangof a passive particle in

e a three-vortex flow contains a variety of structures, that in-
Lo fluences tracer motion in the chaotic sea. These structures are
- . responsible for intermittent character of a chaotic tracer tra-

. jectory; a tracer, being trapped in the hierarchy of cantori in
the neighborhood of an regular island, moves in an almost
quasiperiodic manner, closely imitating a KAM trajectory.
Occurrence of such long ballistic flights leads to anomalous
(superdiffusive transport properties of chaotic motion. Scal-
ing exponent, describing the behavior of central part of tracer

FIG. 13. Scatter plot of flight length®et angle covered during distribution and low noninteger moments differs from the
the cycle,d;— 6;) versus trapping time. transport exponent in the power law for the growth of vari-

ance, which indicates, that we are dealing with a case of
Note, thatAv, is six times larger tha\ v, 3, so that the strong anomalous diffusig@5]. The shape of the azimuthal
influence of fast trappings on the angular PDF of the tracetracer distribution is non-Gaussian: it is asymmetric and has
P(6,t) should be stronger. The asymmetry Bf6,t) con- long tails. Similar distributions were observed in a model of
firms this suggestion—the rightfast tail in Fig. 6@ is  vortices in sheaf36].
much more pronounced than the Ié&ftow) one. Anomalous transport in Hamiltonian systems typically

Another way of looking at long-time cycles is to analyze implies non-Poissonian character of Poincaegurrences
how fast tracers rotate during that time. Figure 13 shows distribution[63,58; in accordance with this relation, Poin-
scatter plot of a net angle, covered by a tracer- 6, carecycle distribution in three-vortex flow exhibits power-
=6(n;T,e)—6(n;_1T,e) Versus recurrence timer. All law decay for large recurrence times. Analysis of long cor-
cycles, longer than 50000 lie on one of the three straightelations shows that they are caused by sticking of tracers to
lines, corresponding to the angular frequencies of the abovine boundaries of KAM islands inside the mixing region and
mentioned islandsy;~0.138, v, 3~0.0626, and to the an- to the outer border of the chaotic sea. Long Poincyees
gular frequency of a tracer trapped in the outer rim trapare concentrated in the singular zotigsasitrapsand can be
Q,: v,~0.032. On shorter time scale~10*, the majority ~used to detect the relevant ones, i.e., those, that produce
of the cycles are still clustered along these lines, but a wholstrong stickiness, and visualize their structure. Residence
bunch of cycles with random average frequency appeaiime distributions of several major traps have approximately
They correspond to trajectories, which were stuck to two othe same value of decay exponent, and their contributions to
more different traps on their way between successive returrisansport anomalies are comparable. The principal traps are
to B. The dominance of one-flight recurrences can be exof different shape, structure and origin, and rotation frequen-
plained by comparing probabilities of having a recurrence ircies of corresponding flights are not the same: some flights
a given timet due to one-trap and two-trap flights. If a one- move faster than the background, and some slower. To re-
trap probability is given by a power lagor larget): P4(t) produce observed asymmetric distributions, a stochastic
~t~7, then two-trap probability decays as: model of tracer advection should incorporate the effect of
competing flights with different velocities.

In conclusion, we would like to point out, that the present
work should be considered not only as a study of mixing
properties in a rather particular velocity filed, but also as a
i.e., faster tharP(t) for y>1. The latter inequality always nontrivial example of anomalous transport in dynamical sys-
holds for Hamiltonian systems, due to the existence of théems. Advection in a three-vortex flow provides an important
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Py(t)~ f;T*V(t—r)*7d7~t*27+1, (4.1

mean recurrence time: integral in E¢.3) must converge.  link between abstract models of modern dynamical system
theory, and much more complicated models of particle ad-
V. SUMMARY AND CONCLUSION vection in hydrodynamic flows. New techniques, developed

and tested here, such as locating sticky zones via analysis of
Analysis of the advection in the flow field of three iden- Poincarerecurrences, can be useful in the studies of passive
tical point vortices, performed in this paper, reveals a numyparticle transport in harder problems of geophysical fluid dy-
ber of features, which can be relevant in case of more generalamics, such as pollution dispersion in the atmosphere and
two-dimensional2D) incompressible flows, and particularly ocean, ozone transport in the Antarctic polar vortex, large-
in multivortex systems. The case of three-vortex flow isscale mixing in the ocean, etc.
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