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Passive particle transport in three-vortex flow
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We study transport of tracer particles in a two-dimensional incompressible inviscid flow produced by three
point vortices of equal strength. Time dependence of the flow caused by vortex motion gives rise to chaotic
tracer trajectories, which fill parts of the flow plane referred to as mixing regions. For general vortex positions,
a large connected mixing region~chaotic sea! is formed around vortices. It comprises a number of coherent
fluid patches~islands!, which do not mix with the rest of the chaotic sea, inside them particle motion is
predominantly regular; three near-circular islands surrounding vortices are distinguished by their robust nature.
Tracers in the chaotic sea rotate around the center of vorticity in an irregular way. Their trajectories are
intermittent, long flights of almost regular motion are caused by trappings in the boundary regions of regular
islands. The statistics of tracer rotation exhibits anomalous features, such as faster than linear growth of tracer
ensemble variance and asymmetric probability distribution with long power tails. Exponent of the variance
growth power law is different for different time ranges. Central part of the tracer distribution and its low
~noninteger! moments evolve in a self-similar way, characterized by an exponent, which is different from that
of the variance, and contrary to the latter is constant in time. Algebraic tails of the tracer distribution, control-
ling the behavior of the variance, are responsible for this effect. Long correlations in tracer motion lead to
non-Poissonian distribution of Poincare´ recurrences in the mixing region. Analysis of long recurrences proves,
that they are caused by tracer trappings inside boundary layers of islands of regular motion, which always exist
inside the mixing region. Statistics of Poincare´ recurrences and trapping times exhibit power-law decay,
indicating absence of a characteristic relaxation time. Values of the decay exponent for recurrences and for
escape from the analyzed traps are very close to each other; long correlations are not dominated by a single
trap, but are a cumulative effect of all of them, relative importance of a trap is determined by its size, and by
its rotation frequency with respect to the background.

PACS number~s!: 47.32.Cc, 05.45.Ac, 05.60.Cd
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I. INTRODUCTION

Problem of advection in Lagrangian representation i
problem of finding the pathlines of fluid elements in a p
scribed velocity field. It is directly related to the processes
transport of passive particles and passive scalar fields,
has numerous applications in geophysical fluid dynam
chemical physics, flow visualizations, etc. In many of tho
the flow can be considered as two-dimensional and inc
pressible. In this case, advection is described by a nona
nomous Hamiltonian system, and can be distinguished by
nature of the velocity field of the flow being turbulent, lam
nar chaotic, regular, or steady. While the last case is ra
trivial and leads to particle trajectories coinciding wi
streamlines of the flow, in the first three cases typical part
path is chaotic, and we have to abandon the idea of tra
individual particle paths and either resort to probabilistic d
scription of advection or seek to find principal dynamic
structures governing the character of tracer spreading@1–8#.

In this paper, we study transport properties of advection
a flow due to three point vortices moving under their mut
interaction. It can be considered as a continuation of
previous publication@9# on dynamics of tracers in this flow

*Present address: Lefschetz Center for Dynamical Systems, D
sion of Applied Mathematics, Brown University, Providenc
RI 02912.
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Velocity field, generated by vortices is a regular, quasipe
odic ~periodic in corotating frame! function of time, yet for a
generic vortex initial positions some tracer trajectories
chaotic@10,11#. It is a typical example of chaotic advection
which, in a narrow sense, is defined as an appearanc
Lagrangian chaos in a regular, fully deterministic veloc
field @12#. Chaotic advection deserved a lot of attention f
two main reasons: its direct application to transport pheno
ena in unsteady laminar flows, and as a starting point for
study of large scale transport in two-dimensional turbulen
Point-vortex systems come as a first approximation to
flows dominated by coherent vortical structures, they capt
some principal features of such flows@13–16#. Considerable
simplification of the flow dynamics allows a detailed ana
sis of tracer motion in point vortex systems in many cas
When the flow is periodic~in some reference frame!, a Poin-
carémap of tracer trajectories can be used to find regions
chaotic tracer dynamics; such is a situation in oscillat
vortex-pair problem@4#, three-vortex flow in unbounded
plane @11,17,9#, leapfrogging motion of two vortex pairs
@18#, vortex flows is bounded and periodic domains@19–22#.
This technique is inapplicable for aperiodic flows; in Re
@23# particle tracking, tracer cloud spreading, and finite-tim
Lyapunov exponent analysis were used to study the ad
tion in the field of four chaotically moving point vortices o
identical strength, in Ref.@24# similar methods were used fo
advection in an open chaotic flow due to four vortices w
zero total circulation.

i-
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In this paper, we study asymptotic properties of pass
particle transport in a flow due to three identical point vor
ces. The degree of tracer chaotization depends on rela
positions of vortices with respect to each other@9#. We look
at the most interesting, strongly chaotic case, when vo
motion creates a large connected mixing region in the flo
We have found, that tracer statistics in such flow is anom
lous, i.e., non-Gaussian. This result can be related to gen
properties of transport in Hamiltonian systems@25#. Generic
Hamiltonian chaos is not ergodic, the phase space cont
an infinite set of islands filled with regular trajectories, form
ing a fractal structure, which strongly affects the motion
the parts of chaotic sea, adjacent to it. These parts, ca
singular zones, act as particle quasitraps, and produce l
lasting, algebraically decaying correlations in particle mot
@26,27#. The memory effects due to correlations sometim
can be taken into account by the modification of the dif
sion coefficient in the Fokker-Plank-Kolmogorov equati
@28,29#. However, the influence of correlations if often mo
profound, leading to nondiffusive kinetics, characterized
nonlinear growth of particle displacement variance in so
directionx

s2~ t !5^~x2^x&!2&;tm, ~1.1!

with non-Gaussian value of the transport exponentmÞ1.
Such cases are referred to as anomalous diffusion, or, m
generally, anomalous transport.

Anomalous transport occurs in many physical settin
both in Hamiltonian and dissipative systems@30–35#. Nu-
merical studies of Hamiltonian flows and maps@36,27,37,38#
also provided evidence of non-Gaussian transport, wh
was named ‘‘strange kinetics’’@25#. Apart from the nonlin-
ear growth of the variance~1.1!, strange kinetics comprise
such effects as non-Poissonian distribution of Poincare´ recur-
rences, power-law decay of exit time distributions, etc.
search for a theoretical description of anomalous trans
brought up a number of new notions into the field, such
Lévy flights @39#, continuous time random walks@40#, re-
newal formalism @41,42#, fractional kinetics @43,27,44#.
However, despite a considerable progress in our underst
ing of strange kinetics, some principal questions remain
answered. Returning to the hydrodynamic language, we
say, that at the present moment there is no complete trans
theory of advection, which would be able, for a given velo
ity field, predict the statistics of tracer dispersion; in oth
words, given the stream function of the flowC(x,y,t) find
the probability distribution function~PDF! for the tracer po-
sition P(x,y,t) for large times. For that reason, numeric
analysis of the advection statistics remains an important
in our studies.

In Sec. II, we review the dynamics of the advection in t
three point vortex system. Motion of three point vortices
governed by an integrable Hamiltonian system, and is qu
periodic for almost all values of system parameters~initial
conditions!. It can be thought of as a superposition of a u
form rotation and periodic relative motion. In a referen
frame, corotating with vortices, their motion, and the velo
ity flow field produced by them, are periodic. Advectio
equations in the corotating frame have a structure of a p
odically forced Hamiltonian system. We analyze the dep
e
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dence of advection pattern~phase space structure! on the
flow parameter, and review some of the analytical results
Ref. @9#.

Results of a numerical study of tracer transport proper
in the mixing region are presented in Sec. III. Tracer sta
tics considerably differs from Gaussian, their azimuthal d
tribution P(u,t) has long tails and is asymmetric. Evolutio
of distribution moments does not follow a single-scaling la
and cannot be described by a unique transport exponent.
cently @45#, a notion of strong anomalous diffusion was pr
posed for a situation of this kind, when the transport exp
nents are different for small and large moments. In our ca
low noninteger moments, obey a relatively simple scal
relationshipMa(t);Ctda with exponentd50.626, reflect-
ing a self-similar spreading of the central part of tracer d
tribution. Higher moments do not obey this scaling, for e
ample, variance (a52), is characterized by exponentm
~instead of 2d!, which has different values for different tim
ranges, oscillating betweenm1'1.8 andm2'1.3.

In Sec. IV, the long-time correlations in tracer motio
leading to the anomalous tracer properties are studied.
start from distribution of Poincare´ recurrences to some ob
servation domain inside the mixing region. Short-time rec
rences decay exponentially, but do not have a sing
characteristic time, due to the existence of a large sc
structures in the chaotic sea. Long recurrences have a po
law decay, with the exponentg'2.6. Analysis of long Poin-
carécycles shows, that they originate from tracer trappin
inside singular zones along the borders between regular
chaotic regions. We identify a few principal traps, and bu
the histograms of residence time distributions for them.
though the sticky zones have very different geometry, th
residence time power-law tails have approximately the sa
value of decay exponentg i'2.5. The exponents in Poincar´
recurrence and residence time distributions practically co
cide, which is not surprising: it reflects the fact that the m
jority of long recurrences are due to ‘‘one-trapping’’ cycle
A somewhat faster decay of recurrences can be attribute
the admixture of multiple-trapping events, when a trac
during its travel between two successive returns to the ob
vation domain, gets stuck inside singular zones more t
once.

Since the decay exponents of the major traps are so s
lar, relative importance of the traps in producing long cor
lations is determined by the area of singular zones. We h
found, that in our system, contributions from several prin
pal traps are comparable, and have to be taken into acc
when the effects of correlations on transport are studied.
we have mentioned before, these traps are of different ori
i.e., they are not just a family of symmetric islands; a ma
consequence is that they have different rotation frequenc
in other words, they produce flights with different velocitie
This further complicates statistical description of tracer a
vection: not only a simple Gaussian process, but also a c
stant velocity Levy-walk model@40#, or any other stochastic
model assuming constant flight speed, cannot be app
here, without modifications accounting for different flig
speeds.

II. ADVECTION DYNAMICS IN THREE-VORTEX FLOW

Trajectory of a passive tracer in an incompressible tw
dimensional flow is given by a solution of advection equ
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PRE 61 3779PASSIVE PARTICLE TRANSPORT IN THREE-VORTEX FLOW
tion, which have a Hamiltonian form

ẋ5
]C~x,y,t !

]y
; ẏ52

]C~x,y,t !

]x
, ~2.1!

wherex,y are coordinates of the tracer, dot denotes time
ferentiation, and the flow velocity field is specified by strea
functionC(x,y,t), so thatv5(]yC,2]xC). Equation~2.1!
can be put in a compact form by introducing complex co
dinatez[x1 iy

ż* 5@z* ,C#52i
]C

]z
~2.2!

with fundamental Poisson bracket given by@z,z* #522i .
Stream function of a system of three point vortices is

sum of contributions of individual vortices@46#

C~z,z* ,t !52
1

4p (
m51

3

km lnuz2zm~ t !u2, ~2.3!

where zm(t)[xm(t)1 iym(t) and km are coordinates and
strengths of corresponding vortices. The above formula
sumes that the flow occupies the whole plane~no walls or
other obstacles of the kind! and has zero velocity at infinity
Advection equation takes form

ż* 5@z* ,C#5
1

2p i (
m51

3
km

z2zm~ t !
. ~2.4!

As soon as vortex trajectorieszm(t) are known, the flow is
completely specified.

Vortices are advected by mutual interaction. Equat
governing their motion is similar to Eq.~2.4!

żm* 5
1

2p i (
j Þm

kj

zm2zj
~m, j 51,2,3!, ~2.5!

where singular self-advection term withj 5m should be ex-
cluded from the sum. The above system has a numbe
interesting solutions@47–51#, among them finite-time vortex
collapse @52# @53#, scattering of a vortex pair on a poin
vortex @54#, etc.

We restrict our attention to the vortices of equal stren
k[km , m51,2,3, and discuss relevant features of the so
tion of Eq. ~2.5! for this case, in order to provide an insig
at the character of the motion. It was known since Kircho
that dynamics of point vortices can be written in the form
Hamilton equations. In case of identical vortices, Eq.~2.5!
can be written as

żm* 5@zm* ,H#, ~2.6!

with Hamiltonian function

H52
k

4p (
j Þm

lnuzm2zj u2 ~2.7!

and fundamental Poisson bracket

@zm ,zj #50, @zm ,zj* #522idm j . ~2.8!
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This system is autonomous, andH is an integral of motion.
Translational and rotational invariance yield three more fi
integrals: two components of vortex ‘‘momentum’’

Q1 iP[(
j 51

3

kzj , ~2.9!

and ‘‘angular momentum’’

L2[(
j 51

3

kuzj u2. ~2.10!

Out of this four, three integrals in involution can be forme
H, L2, and Q21P2, which indicates that system~2.6! is
integrable. For any vortex configuration, we can introduc
‘‘center of vorticity’’ reference frame by choosing the coo
dinate system origin at the pointQ1 iP, so that in this co-
ordinates vortex ‘‘momentum’’ is zero, i.e.,Q5P50. Fur-
ther, we can rescale coordinates and time

z→z/L, t→~k/L2!t. ~2.11!

Below, we will always use ‘‘center-of-vorticity’’ reference
frame and dimensionless coordinates~2.11!, thus fixing Q
5P50, L51, k51. Value of the HamiltonianH is the only
parameter that is left that distinguishes different types of m
tion. It can be related to the product of side lengths of
vortex triangleL

e22pH5L[uz12z2uuz22z3uuz32z1u. ~2.12!

Parameter range is fromH50, L51, when vortices stay in
the vertices of uniformly rotating equilateral triangle, up
the limiting valuesH5`, L50, when two of the three vor-
tices tend to coalesce. Their is an elegant way@11# to reduce
Eq. ~2.6! to an equation for ‘‘area variable’’I (t), propor-
tional to the square of the triangle areaA

I ~ t ![~16/3!A2. ~2.13!

Dynamics ofI (t) is given by

S dI

dt D 2

52I @ I 316I 213~328L2!I 18L2~2L221!#

[2P~ I ;L!, ~2.14!

wheret53/(2pL2)t. It can be thought of as a motion of
particle of mass 2 with zero total energy in the potent
P(I ;L). This motion can be of three different types: forL
less, equal or larger thanLc[1/&. Shape of the potentia
well for these three cases is shown in Fig. 1. WhenL
,Lc , I (t) reaches zero periodically, i.e., vortices period
cally pass through an aligned configuration; forL5Lc mo-
tion is aperiodic, aligned configuration turns into an unsta
equilibrium; and forL.Lc I (t) oscillates between two posi
tive roots ofP(I ;L)—vortices never get aligned. Solution o
Eq. ~2.14! can be written in terms of Jacobi elliptic function
@11# @9#, it is periodic forLÞLc , with periodT(L) diverg-
ing logarithmically asL→Lc . Vortex trajectories can be
reconstructed fromI (t), they are given by
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zm~ t !5621/2Leif2~ t !/2$@12I 1/2~ t !#1/2e22p i ~m21!/3e2 if1~ t !/2

1@11I 1/2~ t !#1/2e24p i ~m21!/3eif1~ t !/2%, ~m51,2,3!

~2.15!

where ‘‘configuration angle’’f1(t) is defined by

cos 3f15
~113I !24L2

~12I !3/2
~2.16!

and ‘‘rotation angle’’f2(t) can be written as a quadrature
some function ofI (t) @9#. Note that relative motion of vor-
tices, described by the term in square brackets in Eq.~2.15!
is periodic @47,11# ~with period Trel52T for L,Lc and
Trel53T for L.Lc), and during each period the whole co
figuration is rotated by a constant angleQ(L)[f2(Trel)
2f2(0), which means we can consider vortex motion a
superposition of periodic motion and rotation with consta
angular velocity@17,9#

V~L![Q~L!/Trel . ~2.17!

In general,V(L) is incommensurate with 2p, and vortex
trajectorieszm(t) are quasiperiodic.

In addition to the laboratory ‘‘center of vorticity’’ refer
ence frame, defined above, it is convenient to consider
other reference frame, corotating with vortices with angu
velocity V(L). Vortex trajectories in the corotating frame

z̃m~ t !5zm~ t !e2 iV~L!t, m51,2,3 ~2.18!

are periodic with periodTrel . The advection Eq.~2.4! in the
corotating frame takes form

ż̃* 5@ z̃* ,C̃#5
k

2p i (
m51

3
1

z̃2 z̃m~ t !
1 iV~L!z̃* ,

~2.19!

FIG. 1. Effective potentialP(I ;L) for the dynamics of the area
variable I (t), shown for three values ofL: L150.6,Lc ; L1

51/&5Lc ; L150.8.Lc .
a
t

n-
r

wherez̃5ze2 iVt is tracer coordinate in the corotating fram
and the stream function~periodic in time with periodT! ac-
quires an additional term, corresponding to rotational ‘‘e
ergy’’

C̃~ z̃,z̃* ,t !52
k

4p (
j 51

3

lnuz̃2 z̃j~ t !u21
V~L!

2
z̃z̃* .

~2.20!

System~2.19! belongs to the class of Hamiltonian sy
tems with 11

2 degrees of freedom, its solutions can be regu
or chaotic, depending on the initial position of the tracer, a
the character of vortex motion, i.e., form of functionsz̃m(t)
specified byL. Appearance of chaotic tracer trajectories
this system was first demonstrated in Refs.@11# and @10#.
Structure of the advection pattern, i.e., dependence of
solution type on the initial position, was analyzed nume
cally in Ref. @17# and numerically and analytically in Ref
@9#.

Below we present examples of advection patterns for f
values of the parameterL, illustrating the variety of phase
space structures in three-vortex flow. Periodicity of the flo
in the corotating frame allows to construct Poincare´ map of
tracer trajectories. We integrate Eq.~2.4! numerically and
record tracer position~in the corotating frame! with time
interval equal to the period of the flowT, see Fig. 2. It turns
out, that degree of chaotization of tracer motion varies c
siderably with the change of the geometry of the backgrou
vortex motion. WhenL51, vortices do not move in the
corotating frame and Eq.~2.19! becomes an autonomous sy
tem, so advection is integrable—tracers move along the le
curves of Eq.~2.20! ~streamlines!. Among those, there are
two sets of separatrices, connecting saddle points
C̃( z̃,z̃* ), where tracer trajectory is aperiodic. They are t
seeds of chaos—even for the slightly distorted equilate
configuration withL512e, e!1, when vortices start to
oscillate around the equilibrium position with amplitude
order Ae, the separatrices split and form two thin mixin
layers, Fig. 2~a!. These layers merge together for fairly sma
value of distortione'1026, mixing region grows very fast
asL decreases, see Fig. 2~b!, L50.94. The strongest chao
tization occurs whenL is close toLc , Fig. 2~c!. After L
passes its critical valueLc , the type of vortex motion
changes. This is reflected in the change of the symmetr
vortex trajectories: in ‘‘triangular’’ regime,L.Lc , all three
vortex trajectories can be obtained from each other

z̃m~ t1Trel/3!5 z̃j~ t !e2p i /3, m51,2,3; j 215m mod 3.
~2.21!

In the ‘‘two plus one’’ case,L,Lc , the vortex that was
initially further from the other two becomes special—
keeps oscillating in its own corner, while the other tw
change places with each other. There is still a symmetry

z̃2~ t1Trel /2!5 z̃3~ t !; z̃3~ t1Trel /2!5 z̃2~ t !;

z̃1~ t1Trel /2!5 z̃1~ t !, ~2.22!

but it is only betweenz̃2 and z̃3 ~two vortices in the bottom
in Fig. 2!. These symmetries explain the relation between
period of vortex trajectoriesTrel and the period of the stream
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FIG. 2. Advection patterns for different vortex geometries:~a! Weak chaos,L5122.431027; ~b! L50.94; two types of islands in the
chaotic sea: three smooth vortex cores and elliptic islands with rugged boundaries.~c! L50.707109; strong chaos, elliptic islands vani
from sight ~very small islands still can be detected!. Vortex cores are robust.~d! L50.464; asL gets smaller, the advection pattern sta
to resemble that of a two-vortex system.
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function T. As L gets smaller, the asymmetry between t
isolated vortex and vortices forming a pair becomes m
pronounced—the coherent core around the former gro
while the cores of the pair gets smaller, Fig. 2~d!. Mixing
region shrinks, and asL→0 the advection pattern ap
proaches more and more to the regular advection in the
of two point vortices with strengthsk and 2k.

Except for the near-integrable casesL'1 andL!1, the
advection pattern has three main types of components~i!
‘‘far region,’’ where tracer motion is regular, roughly occu
pying the outside of the circle of radiusRmax'1.6; ~ii ! mix-
ing region inside this circle where fluid is efficiently stirre
by vortex motion;~ii ! islands of regular motion inside th
mixing region, which are of two different types: thre
e
s,

ld

smooth, robust, near-circular patches surrounding vort
and moving together with them, forming coherent structu
known as vortex cores, and elliptic islands, surrounding
stable periodic orbits, number of which, as well as their s
and shape, depends in a very sensitive manner on the sm
est variations in the background flow. In Ref.@9# the robust
nature of the vortex cores was explained and expression
their radiuszc and for radius of the external boundary of th
mixing regionRmax as function of the background flow ge
ometry were derived. For small deviationsdL[L2Lc from
critical configuration, the core radius is given by

zc5F p)

18~ lnlnudLu211 ln4C2!
G 1/2

, ~2.23!
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where constantC2574.3 for nonisolated vortex position~all
three vortices forL.Lc and vortices in the pair forL
,Lc), andC251.20 for isolated vortex in caseL,Lc . The
outside radius of the mixing region is

Rmax5S 8BlnudLu

3)
D 1/6

, ~2.24!

where constantB50.41 for both casesL.Lc andL,Lc .
The tracer motion in regular regions is quasiperiodic, a

can be studied in as much detail as necessary by direct
namical analysis. For example, tracer trajectories in the
region, or inside the cores can be found using perturba
theory up to the desirable degree of approximation@9#. This
procedure may get technically complicated, especially
the motion inside elliptic islands of higher generations, b
the big picture is essentially the same—the island as a w
moves quasiperiodically inside the chaotic sea, with all
tracers inside trapped forever. We should mention, t
strictly speaking, some of the inside tracers move cha
cally, since the Kol’mogorov-Arnol’d-Moser~KAM ! tori of
regular motion are interlayered with thin stochastic layers~in
place of destroyed resonances!. This generic property ha
certain principal consequences, in particular it negates a
sibility of determining the motion inside the regular regio
exactly, but it is not relevant on bigger scales.

III. STATISTICS OF ANGULAR ADVECTION

In the mixing region one cannot follow individual trace
trajectories for longer than a few periods of vortex motio
they diverge exponentially and spread over the whole cha
sea, Fig. 3. The key features of the dynamics of this proc
can be understood in terms of the evolution of the hyperb
points and their invariant manifolds, which govern the geo
etry of mixing, i.e., the way fluid elements are stretched a

FIG. 3. Tracer mixing. Originally concentrated in a rectangle
~0.5, 0!, after only two periods of vortex motion tracers are spre
around the chaotic sea. Manifold structures still can be seen.
d
y-
r
n

r
t
le
e
t

i-

s-

,
ic
ss
ic
-
d

folded. However, to extract a long-term statistics of t
tracer motion from the manifold geometry can be a prohi
tively difficult task. The reason for that is the crucial influ
ence of the fine structures in the chaotic sea, such as hie
chies of island chains, that, although very small, cannot
neglected because they introduce long-time correlations,
cause intermittent behavior of the tracer trajectories.

Alternative approach is to model the motion in the chao
sea as a random process. A central problem here is ho
specify, for a given velocity field, the type and parameters
this random process. A major difficulty is the sensitivity
the long-term tracer statistics on the small variations in
control parameters of the flow, arising from the sensitivity
the fine topological structures in the chaotic sea. Despit
considerable progress in the understanding of the origin
the long-time correlations, created by the stickiness of
trajectories to the singular zones surrounding regular islan
and of their influence on the statistics, one still have to r
on numerical simulations in order to construct a realistic
proximation for the transport in the mixing region.

To study statistics of the tracer motion, we have nume
cally integrated equations for the tracer trajectories~2.4!, for
a typical case of strongly mixing background vortex flo
with L50.717. Advection pattern for this value of the flo
parameter exhibits different types of interesting phase sp
structures: vortex cores with sticky bands on their borde
elliptic islands with different kinds of boundary chains, an
sticky outer rim of the chaotic region. We use a fifth-ord
symplectic Gauss-Legendre scheme@55# with a time step
Dt50.04, such thatvmaxDt'0.03, wherevmax'(2pzc)

22

'0.78 is the fastest frequency of the problem, determined
the closest approach of the tracer to the vortexzc'0.18.
Symplectic schemes are a natural choice for numerical i
gration of Hamiltonian systems, in particular, for the case
a four-point vortex system they work better than stand
Runge-Kutta schemes@56#, although recently in Ref.@23# it
was demonstrated, that higher order adaptive Runge-K
schemes can yield similar performance.

Poincare´ sections of tracer trajectories, shown in Fig.
for different phases (t50,T/4,T/2,3T/4) of vortex configu-
ration, illustrate the dynamics of the advection pattern, a
allow to express the rotation frequencies of the regular
lands, through the frequency of corotating framen rot
[V/(2p)50.0879 and the frequency of vortex relative m
tion n rel[1/Trel50.0511.

Let us concentrate our attention on the angular advec
of tracers, since their motion in the radial direction
bounded by the outer border of the mixing region~2.24!. To
describe the angular motion of a tracer, let us consider
azimuthal coordinate

u~ t ![Arg z ~3.1!

as a continuous function of time, in other words,u(t) is not
confined to the interval~0;2p!, but keeps track of the numbe
of whole rotations performed by a tracer since the beginn
of its motion. We start with an ensemble of 6144 tracers a
numerically integrate their trajectories fortmax5512000 time
units @see Eq.~2.11! for definition of the time scale# which
corresponds toNmax'26160 periods of vortex relative mo
tion. All initial conditions were taken inside the mixing re

t
d
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FIG. 4. Advection pattern for different phases of vortex configuration.~a! Configuration with maximum of the vortex triangle are
corresponds tot50; ~b! quarter of the area oscillation period:t5T/4; ~c! half-period:t5T/2; ~d! t53T/4.
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gion. Mean advection anglêu(t)& and the angular varianc
s2(t)[^@u(t)2^u(t)&#2& are defined as averages over t
ensemble. Typical evolution of tracer azimuth is illustrat
by Fig. 5, whereu(t)2^u(t)& is plotted for eight trajectories
Intermittent character of tracer motion is clearly seen, app
ently random pieces of trajectory are interrupted by regu
flights, some of which are quite long.

The mean grows linearly with time~except for the very
beginning of the motion! and we can define an average ro
tion frequency for the chaotic sea

n̄[^u~ t !&/~2pt !, ~3.2!

its value is n̄'0.0742. The growth of the variance is n
linear. Figure 6~a! shows the log-log plot of the varianc
r-
r

-

versus time, indicating the anomalous character of the an
lar diffusion. Moreover, different time ranges have differe
transport exponents

t,104 s2~ t !;tm1 m1'1.79

104,t,106 s2~ t !;tm2 m2'1.32

t.106 s2~ t !;tm3 m3'1.78 ~3.3!

as can be seen from Fig. 6~a!. This behavior of the variance
can be explained by the so-called log-periodic oscillatio
@57#, which infer existence of a discrete renormalizati
property of trajectories, when they stick to a hierarchic
chains of islands.



rm
on

e

le
m
tr

a

bu-

er

ng
e
at

-

ri-
nt
vior

a-
e-

the
e-
sur-
ry,
ure
ied
y

-
r-

s is
of

ish
ra-

a
s
ega-

this

the

cers
ng

to
cor-

a
he
not

we
-

3784 PRE 61LEONID KUZNETSOV AND GEORGE M. ZASLAVSKY
To detect a source of this behavior, we look at the fo
and the evolution of the angular probability density functi
of the tracersP(u;t), which is constructed by building a
histogram of a numerically obtained set of values ofu(t) of
the tracer ensemble for a given time.

For many stochastic processes, PDF at large tim
evolves in a self-similar way

P~X;t !5g~ t ! f ~j! j[g~ t !@X2^X&# . ~3.4!

For example, PDF of a Gaussian random variableX has

P~X;t !5~pt !21/2expj2/2 j[t21/2@X2^X&# ~3.5!

and a PDF of a Levy-type process~random walker with in-
finite mean-square step length!

P~X;t !5t21/d f ~j! j[t21/dX. ~3.6!

To check if the obtained PDF of tracer rotation ang
evolves in such self-similar way, we have looked at the ti
dependence of the probability density at the center of dis
bution, Pmax(t)5P(^u&;t). It turns out, thatPmax(t) quite ac-
curately follows a power lawPmax(t);t2d with an exponent
d'0.626, which suggests that PDF may have a form

P~u,t !5t2d f ~j!, j5@u~ t !2^u~ t !&#t2d. ~3.7!

Indeed, plots of tracer PDF as function ofj for different
times coincide, see Fig. 6~b! indicating that self similarity
~3.7! does hold.

There is a seeming discrepancy between this result
the behavior of the variance~3.3!. According to Eq.~3.7!, the
time dependence of thenth moment is given by

Mn~ t !5E unP~u,t !du5tdnE jnf ~j!dj;Ctdn ~3.8!

and the variance have to grow ass2(t);t2d, so that the
value of the transport exponent should be constant:m52d

FIG. 5. Time series of the azimuthal coordinateu2^u& for eight
typical tracer trajectories.
s

s
e
i-

nd

'1.25. However, Eq.~3.8! holds only if f (j) decays fast
enough at infinity. Iff (j) has a power tail,f (j);j2h, only
the moments withn,h21 will follow Eq. ~3.8!, whereas
higher moments are determined by the cutoff of the distri
tion at largeu. Tails of the tracer PDF, plotted in Fig. 6~c!
for four different times indicate a decay according to a pow
law

P~u;t !;~u2^u&!2h ~3.9!

with h52.72. For such slow decay, all moments starti
from the variance (n52) are defined by the far end of th
distribution, i.e., by a specific mechanism of the cutoff
largeu.

Self similarity ~3.7! and~3.8! can be traced in the behav
ior of the noninteger momentsMa(t)5*uaP(u,t)du for a
,h21, which are defined by the central part of the dist
bution~Fig. 7!. We have a situation, when a unique expone
is not enough to completely characterize anomalous beha
of tracer transport. This case was namedstrong anomalous
diffusionin Ref. @45#, in contrast to the case of weak anom
lous diffusion, when the evolution of all moments is d
scribed by a single exponentd, according to Eq.~3.8!.

The origin of the power tails ofP(u,t) as well as of the
other anomalous properties of the tracer statistics, lies in
intermittent character of the tracer motion in the mixing r
gion, caused by tracer trappings in the singular zones,
rounding KAM islands. A piece of a chaotic tracer trajecto
during which the tracer is caught in the hierarchical struct
at the island border is almost regular—the tracer is carr
along with the island in a ballistic flight, characterized b
almost constant angular velocity~averaged over times of or
der T!. Appearance of flights and their dominant role in pa
ticle statistics is typical for the chaotic flows@58,36#.

The structure of the singular zones on the island border
usually very sensitive to the variations of the parameters
the flow. In some situations, particle quasi-traps can van
altogether from the chaotic sea, resulting in the ‘‘resto
tion’’ of the normal diffusive behavior@58#. We have looked
for such situation for a three-vortex flow, trying to find
value of the parameterL for which tracer statistics become
Gaussian at large times. The results of this search were n
tive, but insightful. Taking a value ofL, for which the ad-
vection pattern is seemingly devoid of sticky structures@Fig.
2~c!#, we have propagated an ensemble of particles in
flow, looking at the behavior of the variances2(t). If the
number of the particles in the ensemble is not too large,
resulting angular diffusion appears normal:s2(t);t. How-
ever, after the ensemble size is increased, some of the tra
fall into small quasitraps hidden in the chaotic sea and lo
flights appear, destroying Gaussian statistics.

IV. POINCARÉ RECURRENCES AND FLIGHTS

Poincare´ map of the tracer trajectories used in Sec. II
visualize advection patterns, can be employed to study
relations in the tracer motion. When a tracer is moving in
flight, its trajectory is localized around a particular trap in t
phase space, so that during the time of the flight it does
visit the well-mixed component of the stochastic sea. If
take a domainB in the well-mixed region, and examine Poin
carérecurrences toB, a flight will indicate itself by produc-
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FIG. 6. ~a! Anomalous growth of tracer ensemble variance:s2(t);tm. Transport exponentm is different for different time ranges, se
Eq. ~3.3!. ~b! Scaled probability density of tracer angular displacement~3.7! as a function of the similarity variablej[t2d(u2^u&), d
50.625.~c! Tails ~not scaled! of the same distribution in log-log scale show a slow, power-law decay with exponenth'2.8.
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ing a long-recurrent event. Analysis of such events can
veal what flight types are present in a system, and determ
characteristics for each type of flights, e.g., flight veloc
~angular frequency in our geometry!, domains of localiza-
tion, flight length PDF, etc.

In this section, we will analyze tracer flights in a thre
vortex flow with L50.717, following the above recipe. T
start, we need to chose a boxB in the well-mixed region of
the flow. We cannot take it very large, because we want
quasitraps to be outside ofB, in order to be able to detec
them. On the other hand, we cannot take it very small eith
since in that case flights will be shadowed by a backgro
of random, no-flight recurrences.

Indeed, the PDF of the recurrence timeP(t;B) can be
e-
ne

ll

r,
d

thought of as a sum of contributions from long-correlat
flights Pf l(t;B) and from recurrences due to random moti
in the well-mixed regionPmix(t;B):

P~t;B!5H Pmix~t;B!, if t,tc

Pf l~t;B!, if t.tc ,
~4.1!

wheretc is a crossover time. We expect that the distributi
of random recurrences resembles a Poissonian distribu
typical for the dynamical chaos with perfect mixing~see
Refs.@27# and @59# and references therein!

Pmix~t;B!5@1/̂ t8&#e2t/^t8&. ~4.2!
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In this situation recurrences longer than^t8& are practically
solely due to flights, whereas those of order^t8& and shorter
are predominantly of random origin. Maximum observab
flight length is restricted by the total integration timetmax, so
the flight tail of the recurrences distribution is limited to th
middle part of the interval (̂t8&,tmax). In our system, traps
occupy a relatively small portion of the chaotic sea, a
flight events are rare, in a sense that mean recurrence
for no-flight events^t8& is of the same order as the tot
mean recurrence time

^t&[E
0

`

tP~t;B!dt. ~4.3!

Since we assume motion in the chaotic region to be ergo
^t& should be inversely proportional to the area of the obs
vation domainB

^t&5~G0 /B!Trel , ~4.4!

where G0 is admissible volume@60,61#. If we take B too
small, ^t& and ^t8& can get comparable withtmax, and there
will be no flight tail to analyze, PDF of the Poincare´ recur-
rences~4.1! will be dominated by random events for all ob
servation periodt,tmax.

Poincare´ map we are using is defined as follows. For
point z0 in the corotating advection plane, let us denot
z(t;z0) a tracer trajectory originating atz0 , i.e., a solution of
Eq. ~2.19! with initial condition z(0;z0)5z0 . Then, an im-
age ofz0 is given by a position of the tracer after one peri
of relative vortex motionTrel

M̂ ~z0!5z~Trel;z0!. ~4.5!

The mapM̂ depends on the choice of Poincare´ section plane,
specified by a vortex phase att50. We chose to sett50 at

FIG. 7. Growth of noninteger momentM0.5;td/2 is consistent
with the self-similarity~3.7! of the central part of tracer distribution
d
e

ic,
r-

the moment when vortices form an isosceles triangle with
acute angles~the vortex triangle area reaches its maximum!,
see Fig. 4~a!.

As an observation domainB, we took a squareB:
xP(0,0.4),yP(0,0.4) in the well-mixed part of the stocha
tic sea. To collect recurrence statistics the same ensemb
N56144 tracer trajectories integrated tilltmax5512000 time
units ~2.11! as in Sec. III was used. Each tracer trajecto
generates a corresponding trajectory of the mapM̂—a se-
quence$zn5z(nTrel)% with n running from zero toNmax
5tmax/Trel'26160. We define return times a as a sub
quence of map times$nTrel% corresponding to return events
$t i5niTrel : zni

PB, zni21¹B}, and recurrence times as in

tervals between successive returns:$t i5t i2t i 21%.
A histogram of the distribution of Poincare´ recurrences

P(t) to the boxB is shown in Fig. 8. The total number o
recurrences, generated by our tracer ensemble wasNrec
53,607,086; the longest recurrence time wastmax
5355,899; which is comparable with total integration tim
tmax. For smallt, P(t) decays exponentially, although th
decay rate changes from̂t18&'670 to ^t28&'2800 whent
goes from 102 to 104 ~see Fig. 8!. This indicates a presenc
of permeable barriers~cantori!, separating the mixing region
into several parts of comparable areas. Particles returnin
B without crossing these barriers have shorter character
return time, that the ones crossing it. Mean recurrence t
~4.3! is ^t&'850, it is of order̂ t18&—fast recurrences domi
nate. Its knowledge allows us to find the total area of
mixing region ~excluding islands!, using Eq.~4.4! we get
G05(^t&/Trel) B56.9 ~compare to Fig. 4!. Crossover from
exponential to algebraic decay occurs attc'23104. As an
experimental argument in favor of choosing large obser
tion domain, we compare the tails of distributions of Po
caré recurrences to the boxB and to the smaller boxB2 :
xP(0,0.2),yP(0,0.2) @Fig. 9~a!#. Both distributions are ob-
tained from the same set of trajectories, so they are supp
to capture the same amount of long-correlated flights. In

FIG. 8. Distribution of Poincare´ recurrences to the boxB:
xP(0,0.4), yP(0,0.4).
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latter case~box B2) a crossover to power law starts only
tc2

'45 000, which means, that flights with duration less t

tc2
are shadowed by random recurrences, i.e., lost.

Our main object of interest is long recurrences, on
bringing in the anomalous transport properties. The tail
the distribution, plotted in Fig. 9~b! in log-log scale, shows a
power-law decay at larget

P~t!;t2g ~4.6!

with the exponent

FIG. 9. ~a! Comparison of the tails of Poincare´ recurrences to
the boxB: xP(0,0.4),yP(0,0.4), with that to the smaller boxB2 :
xP(0,0.2), yP(0,0.2); bigger box is more effective in separatin
flight tails from the background of random recurrences.~b! Tail of
Poincare´ recurrences toB in log-log scale exhibits a power-law
decay, with the exponentg'2.66, see Eqs.~4.6! and ~4.7!.
t

s
f

g'2.66. ~4.7!

Algebraic decay of the Poincare´ recurrences was observed
many Hamiltonian flows and area-preserving maps@63,62#.
Its connection with anomalous transport was establishe
Ref. @63#.

To find an origin of long recurrences in our system, w
want to know, ‘‘where in the phase space the tracer trav
during such long excursions?’’ To get a direct answer to t
question, we have plotted long Poincare´ cycles, color coding
them by their recurrence times~Fig. 10!. Poincare´ cycleCi is
a piece of an orbit of the mapM̂ between two successiv
returns:Ci5$zn:ni<n,ni 11%. In Fig. 10 only cycles longer
than Nmin5500 map periods (t i.NminTtel'104) are in-
cluded. One can see, that the distribution of the orbit po
in the phase space is highly nonuniform, they are conc
trated around the regular islands and in the thin layer on
outer boundary of the mixing region, in other words, in t
neighborhood of every KAM surface, bordering the stoch
tic sea. This is a manifestation of the well-known effect
the stickiness of the KAM surfaces~see for example, Ref
@59#!. The deeper the particle penetrates into the hierarch
structure on the island border, the longer time it is trapp
there. Color coding in Fig. 10 illustrates this effect: longe
cycles~red! are those, which got closest to the island bord

Trapping of the tracers in the stickysingular zoneson the
borders of the chaotic region seems to be the only mec
nism causing the long-term correlations in our system. Qu
tatively, the stickiness of KAM surfaces is caused by t
fact, that effective Lyapunov exponents in the vicinity
islands are vanishingly small. One of the first models
tempting to explain the way quasitraps work, introduced
diffusion coefficient, continuously approaching zero as
distance from the trajectory to the boundary KAM surfa
tends to zero@64#. Recently, a similar mechanism was foun
to be responsible for anomalous longtitudal dispersion
temporally irregular transversely bounded shear flow@32#.
But for periodically perturbed Hamiltonian systems, in co
trast to this ‘‘smooth escape’’ mechanism, numerical expe
ments show, that particle escapes from the trap in a serie
jumps, as the trajectory suddenly crosses partial barr
~cantori! stratifying the phase space near regular islan
This give rise to Markov chain and Markov tree models@65#
@26#, which describe the quasidiscrete nature of transpor
terms of fluxes through individual cantori, organized in
self-similar pattern, assuming that between two consecu
crossings particle moves in a random manner for lo
enough time to lose memory. Figure 11 shows the chara
of particle escape from a singular zone around one of
vortex cores in our system. We have put two tracers clos
the core boundary, and followed the distance from them
the central vortex. Initially it oscillates between two value
tracers are trapped between two oval cantori, with we
defined borders. Then, suddenly, a tracer hits a hole i
cantorus, and jumps to another ‘‘level,’’ where it gets stu
again, bounded to stay inside by another barrier. Soone
later it finds a hole in that one, too, and eventually esca
into the chaotic sea.

Figure 10 shows, that several traps contribute to the a
braic flight tail of Poincare´ recurrences PDF, and that the
traps considerably differ in size, shape, and structure.
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FIG. 10. ~Color! Poincare´ cycles, color-coded according to their recurrence time, measured in number of periods of relative
motion Trel519.57. Longest cycles are concentrated in singular sticky zones near KAM islands.
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compare their relative effects, let us define the PDF of
residence time~or stickiness time—time spent in a particul
trap! PQi

(t) for each trapQi . To determinePQi
(t), we need

to specify trap boundaries]Qi , however, tails of residenc
time distribution practically do not depend on the exact p
sition of ]Qi , as long as all singular zones~inside which the
tracer spends most of the trapping time! belonging to a given
trap are completely inside it. In our system individual tra
are well separated from each other by a chaotic sea,
appropriate boundaries can be easily chosen to define
domains. We have analyzed the following traps:Q1 : x
P(20.36,0.36),yP(21.2,20.5) ~big island in the bottom
of Fig. 10!; Q2 : xP(0.5,1), yP(20.2,0.9)~one of the four
e

-

s
nd
ap

big side islands!; Q3 : xP(0.2,0.4),yP(0.9,1.2)~one of the
four small islands close to the outer border!; Q4 : x21y2

.1.32 ~outer rim of the chaotic sea!. All distributions are
extracted from the same set of trajectories, and normali
on a total number of trappings in that particular domain.

Our approach in determining residence time statistics
fers from the conventional one, based on the measureme
exit timedistributionsPe(t), by initializing many particles
inside the trap and finding the probability density of esca
by counting particles leaving the trap. Exit time measu
ments allow to collect a very good statistics and thus re
high accuracy in determiningPe(t) @27,37#. However, exit
time distributions are defined for each sticky zone individ
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ally, and cannot be used to compare different traps. Roug
speaking,Pe(t) tells us how sticky the singular zone is, b
does not tell how big it is. When we initialize a partic
randomly in the chaotic sea, and analyze all the flights
experiences on the way, we can characterize the size of
trap by the frequency with which it is visited. Implement
tion of these procedure is computationally expensive, sinc
particle can wander for a long time without visiting any tra
but the necessary data can be collected from the same
semble we have used for the transport simulations at mini
increase in the computation cost.

Tails of the residence times PDF for the trapsQi , defined
above, are shown in Fig. 12. The decay ofPQi

(t) at large
times is algebraic:

PQi
~ t !5Ait

2g i ~4.8!

with approximately the same value of the decay exponent
all four traps

g i'2.5. ~4.9!

Whether all the exponentsg i should beexactlythe same, i.e.,
whether the value of the decay exponent in the Hamilton
systems is universal or not, is a question with a long hist
~see for example, Refs.@62# and @66#!, and its discussion is
not in the scope of the present paper. We will only note, t
our exponents, coming from the traps with considerably d
ferent geometry, are nevertheless close enough to each o

FIG. 11. Two examples of escape from the sticky band aro
vortex core. Distance from the central vortex to the tracerz vs time
is shown.
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so that on the scale of simulation time (tmax'53105) the
relative effect of the traps are determined by the values of
tail strengthsAi , rather than by the differences ing i . As can
be seen from Fig. 11, there is no single dominating trap—
big trap around the bottom islandQ1 , the trap around the
four big islands on the sideQ2 , and the outside rim trapQ4
have approximately the same strength, and the smaller
Q3 has strength about five times less than that. The value
the Poincare´ recurrence exponent~4.7! agrees reasonabl
well with the stickiness exponent~4.9!, as should be ex-
pected. In summary, we may say that the flight tail of t
Poincare´ recurrences PDF is determined by the cumulat
effect of trappings in several singular zones with simi
power-law large-time asymptotic of the residence time d
tribution.

The effect of a singular zone on transport depends
only on its residence time PDF, but also on how fast
tracer is moving when it is trapped. The average rotat
frequency of tracers in the trap around a KAM island is ve
close to the rotation frequency of the island itself, provid
the center of vorticity always stays outside of the island. T
latter depends on the way the island is advected during
period of vortex relative motionTrel . From phase portraits in
Fig. 4, we can obtain

n15n rot1n rel50.138; n2,35n rot21/2n rel50.0626
~4.10!

for the island inQ1 ,Q2 ,Q3 . Comparingn i with the average
tracer angular advection frequencyn̄50.0742~3.2!, we see,
that Q1 is producing fast flights, rotating forward withDn1
5n12 n̄50.0638 relative to the chaotic background, wh
Q2 andQ3 are slow traps, rotating backward with respect
the background with frequencyDn2,35n2,32 n̄520.0116.

d

FIG. 12. Tails of residence time distributions for the trapsQi

~defined in the text!. All four distributions are obtained from the
same tracer ensemble, so that relative importance of each trap
be seen. Average decay exponent~slope of the linear fit! is g i

52.5.
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Note, thatDn1 is six times larger thanDn2,3, so that the
influence of fast trappings on the angular PDF of the tra
P(u,t) should be stronger. The asymmetry ofP(u,t) con-
firms this suggestion—the right~fast! tail in Fig. 6~a! is
much more pronounced than the left~slow! one.

Another way of looking at long-time cycles is to analy
how fast tracers rotate during that time. Figure 13 show
scatter plot of a net angle, covered by a tracer,u f2u i
5u(niTrel)2u(ni 21Trel) versus recurrence timet i . All
cycles, longer than 50 000 lie on one of the three strai
lines, corresponding to the angular frequencies of the ab
mentioned islands:n1'0.138,n2,3'0.0626, and to the an
gular frequency of a tracer trapped in the outer rim tr
Q4 : n4'0.032. On shorter time scale,t'104, the majority
of the cycles are still clustered along these lines, but a wh
bunch of cycles with random average frequency app
They correspond to trajectories, which were stuck to two
more different traps on their way between successive ret
to B. The dominance of one-flight recurrences can be
plained by comparing probabilities of having a recurrence
a given timet due to one-trap and two-trap flights. If a on
trap probability is given by a power law~for large t!: P1(t)
;t2g, then two-trap probability decays as:

P2~ t !;E
0

t

t2g~ t2t!2gdt;t22g11, ~4.11!

i.e., faster thanP1(t) for g.1. The latter inequality always
holds for Hamiltonian systems, due to the existence of
mean recurrence time: integral in Eq.~4.3! must converge.

V. SUMMARY AND CONCLUSION

Analysis of the advection in the flow field of three ide
tical point vortices, performed in this paper, reveals a nu
ber of features, which can be relevant in case of more gen
two-dimensional~2D! incompressible flows, and particularl
in multivortex systems. The case of three-vortex flow

FIG. 13. Scatter plot of flight lengths~net angle covered during
the cycle,u f2u i) versus trapping timet.
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special—it is one of the simplest systems generating
grangian chaos. Motion of the vortices, specifying the flo
is governed by a Hamiltonian system, which turns out to
integrable due to the sufficient number of independent c
servation laws. Advection equation, written in a referen
frame corotating with vortices, has a structure of a perio
cally forced Hamiltonian system, which allows to carry o
its detailed analytical and numerical study, using we
developed methods for 11

2 degrees of freedom Hamiltonia
systems.

The phase space~advection plane! of a passive particle in
a three-vortex flow contains a variety of structures, that
fluences tracer motion in the chaotic sea. These structure
responsible for intermittent character of a chaotic tracer
jectory; a tracer, being trapped in the hierarchy of cantor
the neighborhood of an regular island, moves in an alm
quasiperiodic manner, closely imitating a KAM trajector
Occurrence of such long ballistic flights leads to anomalo
~superdiffusive! transport properties of chaotic motion. Sca
ing exponent, describing the behavior of central part of tra
distribution and low noninteger moments differs from t
transport exponent in the power law for the growth of va
ance, which indicates, that we are dealing with a case
strong anomalous diffusion@45#. The shape of the azimutha
tracer distribution is non-Gaussian: it is asymmetric and
long tails. Similar distributions were observed in a model
vortices in shear@36#.

Anomalous transport in Hamiltonian systems typica
implies non-Poissonian character of Poincare´ recurrences
distribution @63,58#; in accordance with this relation, Poin
carécycle distribution in three-vortex flow exhibits powe
law decay for large recurrence times. Analysis of long c
relations shows that they are caused by sticking of tracer
the boundaries of KAM islands inside the mixing region a
to the outer border of the chaotic sea. Long Poincare´ cycles
are concentrated in the singular zones~quasitraps! and can be
used to detect the relevant ones, i.e., those, that prod
strong stickiness, and visualize their structure. Reside
time distributions of several major traps have approximat
the same value of decay exponent, and their contribution
transport anomalies are comparable. The principal traps
of different shape, structure and origin, and rotation frequ
cies of corresponding flights are not the same: some flig
move faster than the background, and some slower. To
produce observed asymmetric distributions, a stocha
model of tracer advection should incorporate the effect
competing flights with different velocities.

In conclusion, we would like to point out, that the prese
work should be considered not only as a study of mixi
properties in a rather particular velocity filed, but also as
nontrivial example of anomalous transport in dynamical s
tems. Advection in a three-vortex flow provides an importa
link between abstract models of modern dynamical sys
theory, and much more complicated models of particle
vection in hydrodynamic flows. New techniques, develop
and tested here, such as locating sticky zones via analys
Poincare´ recurrences, can be useful in the studies of pass
particle transport in harder problems of geophysical fluid d
namics, such as pollution dispersion in the atmosphere
ocean, ozone transport in the Antarctic polar vortex, lar
scale mixing in the ocean, etc.
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